Source of Acquisition

NASA Ames Research Center

On-Orbit
Software Analysis
ITC-RIF-04-0030

Final Report

July 2004

On-Orbit Software Analysis
Overview

PoC: Dr. Susanne I. Moran, Intrinsyx Technologies Corporation, NASA Ames Research
Center

Introduction

The On-Orbit Software Analysis Research Infusion Project was done by Intrinsyx
Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration
(NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between
NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx.

Problem Statement

In December 2007, NASA intends to launch the next-generation host systems and payloads
for deployment on-orbit. To mitigate technical and cost risks, and to ensure fidelity,
reliability, and robustness of the on-orbit software, we applied the C Global Surveyor (CGS)
Tool, developed by Kestrel for NASA ARC, to the Habitat Holding Rack (-IHR) software.
The Tool presented an excellent opportunity to evaluate the software, isolate defects prior to
launch, and significantly mitigate potential risks.

The primary objectives of the Project were: -
> Discovery and verification of software pro gréxn properties and dependencies
> Detection and isolation of software defects across different versions of software
» Compilation of historical data and technical expertise for future applications
Application of the Technology to the Target Project

We applied the CGS Tool to the Biological Research Project Rack Interface Controller (B-
RIC), the command and control component of the HHR. The B-RIC formats telemetry data
received from payloads for downloading to the ground, and creates HHR and Payload Health
and Status (H&S) data for on-orbit transmission. We chose three B-RIC versions, each
containing five modules, for the Tool infusion, with expected results as follows: discovery
and verification of software program properties and dependencies; detection and isolation of
software defects over different source code versions; measurements of the efficacy of the
CGS Too}; and historical data and technical expertise for future applications.

Data Collection and Analysis

We ran the CGS Tool on the B-RIC code on three separate baselined versions and on five
logically distinct modules within each of those versions. After each run, we tabulated the
data for error classification, tabulation of numbers of files, numbers of functions within files,
and tabulation of numbers of actual error within the functions. We then did data
interpretation, which consisted of data consolidation to single defect classes, error
verification and isolation for severity against the B-RIC code, and cross-correlation between
captured errors and established metrics. Finally, we evaluated the efficacy of the CGS Tool,
which included correctness of error counts against known errors, length and duration of run-
times, and ease of use.

We found and isolated two general types of errors: the first were caused by the test
environment or the CGS Tool, which were not considered valid, and, hence, not serious;
and the second, which were serious and may impact performance. We also evaluated the
efficacy of the Tool.

The environmental and/or Tool configuration errors were:

» The B-RIC software was tested in a stand-alone mode, which caused a number of
errors to appear because external hardware or interfaces were not connected.

» There were errors caused by the Tool’s inability to “see” such areas as bit fields
and un-initialized pointers.

> There were false indicators, caused by the structure of the code, which the Tool
could not inventory.

The serious defects in the B-RIC code by order of severity were:
» There is a serious memory leak in one of the modules.
> There are _un-initialized arrays of file pointers in the code.

> The run duration for one module indicates potential problems with execution. The
mean run time for that module was 14 hours. The comparative run times for the other
modules ranged from Y2 hour to 2 hours. ‘

> Three of the five modules contain dead code, which impacts code. mtegrlty and may
limit code functionality and/or cause delays in execution because of potential
overload of on-orbit platforms

The CGS Tool was domain-specific and does not readily transform to various apphcatlons
It was also missing a Graphical User Interface (GUI) and had no capability for-automatic
error classification, which made data isolation and interpretation difficult. To miake the Tool
more extensible, we recommended modifications. :

Summary and Lessons Learned

The primary objectives of the On-Orbit Software Analysis Research Infusion Project were
met. The CGS Tool was successfully used to discover and verify program properties and
dependencies, and to detect and isolate software defects. The Tool application to the B-RIC
software resulted in data gathering that can be used for comparative evaluation of future B-

RIC Version releases and other software projects. Application of the CGS Tool also resulted
in s‘wncessﬁ‘l“xr transfprﬂnc pwcnm-f ise from the Technology Developers to the ‘Apﬂhg@"l(\ﬂq

A WA b A A S AL N\sran A AL AN A waalw e

Developers, critical for exnortabﬂlty and continuity of the technology to other programs and
projects. :

The secondary objective, incremental validation of the CGS Tool, was also successfully met.
The couseyucnces of applying the Tool in a different-than-usual environment provided
lessons learned for the Technology Developers about areas where the Tool may be modified
and/or expanded to suit different applications. We continue to interface with the Technology
Developers informally to derive Tool modifications, and to explore future uses of the Tool
for other collaborative efforts.

Table of Contents

1.0 Introduction
1.1 Problem Statement
1.2 System Background
1.3 Project Scope and Delimitation
1.4 Approach
2.0 Methodology
3.0 Data Analyses and Findings
3.1 Data Tabulation
3.2 Data Interpretation
3.2.1 Data Consolidation
3.2.2 Error Verification and Isolation
3.2.3 Cross-correlation to Established Metrics
3.3 CGS Tool Evaluation
3.3.1 Error Correctness
3.3.2° Run-time Efficacy
3.3.3 Usability
4.0 Summary of Findings
5.0 Actions and Recommendations
5.1 Actions
52 Recommendations
6.0 Acronyms
List of Illustrations
. Table 3.1.1 Number of Error Counts per Module for Version 5.0
Table 3.1-2 Number of Error Counts per Module for Version 6.0
Table 3.1-3 Number of Error Counts per Module for Version 7.0
Table 3.1-4 Total Number of Files per Version/Mcdule
Table 3.1-5 Total Number of Functions/Error per Version/Module

Table 3.3.2-1 CGS Tool Run-time for B-RIC Version 7.0

Page

N s it et b

W

[R s BEN B o o W o N A S

10
10
11

00NNV A~

1.0° Introduction

The On-Orbit Software Analysis Research Infusion Project was done by Intrinsyx
Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration
(NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between
NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx.

The On-Orbit Software Analysie Final Report chronicles the Project and documcnts the
findings.

1.1 Problem Statement

In December 2007, NASA intends to launch the next-generation host systems and payloads
for deployment on-orbit. To mitigate technical and cost risks, and to ensure fidelity,
reliability, and robustness of the on-orbit software, we applied the C Global Surveyor (CGS)
Tool, developed by Kestrel for NASA ARG, to the Habitat Holding Rack (HHR) software.
The Tool presented an excellent opportunity to evaluate the software, isolate defects prior to
launch, and s1gmﬁcantly mitigate potential risks.

The primary objectives of the Project were: '
» Discovery and verification of software prdgram properties ‘and dependencies
» Detection and 1solat10n of sofcware defects across different versions of sofiware
> Compllatlon of hlstoncal data and technical expertise for future applications

A secondary objective was: ‘

> ‘Incremental vahdatlon of the CGS Tool

1.2 System Background . -

. The HHR is the central part of the b1010g1ca1 and scientific experlments to be conducted on-
orbit and on the ground for missions following the December 2007 launch.

The Biological Research Project Rack Interface Controller (B-RIC) and Centrifuge Interface

Controller (C-RIC) are the command and control component of the HHR. The B-RIC

formats telemetry data received from payloads for download to the ground, and creates HHR

and Payload Health and Status (H&S) data for on-orbit transmission. The C-RIC is a

derivative of the B-RIC with audio capability and additional payload channels. As poted
below, only the B-RIC was analyzed for this Project.

The B-RIC and C-RIC contain circa 50, 034 Source Lines of Code (SLOCs) each in the C
programming language. The software is in flux with version releases done on an incremental
basis. There are known defects in the software, documented in Software Problem Reports
(SPRs) that are tracked for resolution

1.3 Project Scope and Dehmltatlon

The initial intent of the proposed Project was to apply the CGS Tool to the B-RIC and C-RIC
software. However, the C-RIC software was not ready within the time frame of the Project.

[y

As noted above, the C-RIC is derived from the B-RIC, and the differences between the C-
RIC and the latest B-RIC Version are 20 SLOCs. The decision was made to use three
Versions of the B-RIC source code in place of the C-RIC. Doing so provided an equal
representation of the data and errors, and did not impact the goals of the Project.

The expected benefits include the following:

» Software program verification to isolate defect classes, shch as array ont-of-hounds,
and un-initialized variables/pointers

> Software program analyses for precision and scalability, including false positives
» Data consolidation for comparative analyses
> Benchmarking of the CGS Tool for purposes of efficacy

1.4 Approach

The approach for conducting data gathering and analysis with the CGS Tool consisted of
three phases, delineated below.

» Phase I — Pre Data Gathering. This Phase began with a formal Kick-off Meeting,
followed by training from the Kestrel staff, the CGS Technology Developers to the
Intrinsyx staff, the Applications Developers in the use of the Tool. The B-RIC source
code was prepared for installation on a Laptop, and configured with Unix and the
required CGS applications tools. Concurrently, the proposed approach and metrics
were solidified. The Phase started on 4 March, and ended on 19 March.

> Phase I — Data Gathering. This Phase started with the Principal Investigator (PI) and
the Application Developers configuring the required fields for data gathering and
metrics on the Laptop that housed the Tool and the B-RIC code. Versions 5, 6, and 7
of that code were segmented into the five logical modules, and run with the CGS
Tool. The raw data were gathered and consolidated for subsequent analysis. The
Phase started on 22 March, and ended on 30 April.

» Phase IIT — Post Data Gathering Analysis. Phase III consisted of data consolidation
and preliminary analyses of all code runs, preparation of a Draft Report, thorough
analyses of the defects discovered with the CGS Tool, and preparation and delivery of
the Final Report. The Phase started on 3 May, and ended on 1 July, slightly ahead of
the project 12 July end of the Project.

2.0 Methodology

The methodology for isolating defects entailed running the B-RIC code Versions 5, 6, and 7

with the CGS tool separately for each Version, and for each of the five modules in the
Versions. Those modules are:

» Video Digitalization Compression Card (VDCC). The software module for the
* VDCC provides the main entry points for all modules running on the Card. The main

module initializes message queues, spawns all tasks, and monitors H&S on the Card.
1t contajns 4,027 SLOCs. oo

> High Rate Link Card (HRLC). The HRLC software module is the main entry point
for all other modules running on the Card. Like the VDCC, it initializes message
~queues, Spawns tasks and monitors H&S. It contains 16, 168 SLOCs.

> Serial Card 1553 (SC1553). The sofiware module on this Card is the 1553
commumcatlons link to the HHR. It contains 9,006 SLOCs.

> Serial Card (SERC). The SERC software module is the serial communications link to
the HHR. It contains 874 SLOCs.

- » Main Controller Card (MCC). This software module is the main- thro]]er for the
HHR. It contains-19,959 SLOCs.

Once the code runs were compiete, the first steps cons1sted of data tabulaticn for each
Versmn and moduie, in the following manner:

A > " Error classification .
> Tabulation of number of files
> Tabulation of number of functions within files
» Tabuiation of numbers of actual errors (Reds) within functions
The second steps in the methodology consisted of data interpretation, including:
> Data consolidation to single defect classes
> Exror verification and isolation for severity against the B-RIC code
> Cross-correlation between captured errors and established metrics
* ‘The third and final step is an evaluation of the efficacy of the CGS Tool, including
» Correctness of error count against known errors
» Length and duration of run-times

> Ease of use

3.0 Data Analyses and Findings
3.1 Data Tabulation

The CGS Tool provides a cumulative count by color code, as follows:

» G (Green):

» O (Orange):

> R (Red):

» U (Unreachable)
Tables 3.1-1 through 3.1-3 depict the raw data count for each B-RIC Version.

No errors or defects detected
Potential errors, not enumerated
Actual errors

Unreachable operations', dead code

- Table 3.1-1 Number of Error Counts per Module for Version S

Version 5 VDCC HRLC SCI1553 SERC Mcc
Green 1,267 1,009 1,498 _ 329 1,273
Orange 4,895 1,896 1,969 1,0’73 2,528

Red 225 232 536 ‘ 105 303
Unreachable 0 3 2 | 2 0

Table 3.1-2 Number of Error Counts per Module for Version 6

Version 6 VDCC HRLC SC1553 SERC McCC
Green 1,267 1,031 1,499 330 1,277
Orange 4,895 1,920 1,973 1,078 2,535
Red 225 233 536 105 304
Unreachable 0 4 3 3 0

Table 3.1-3 Number of Error Counts per Module for Version 7

Version7 | VDCC HRLC SC1553 SERC Mcc
Green 1,619 1252 1,755 133 1311
Orange 4,553 1,929 1,907 1,097 2,600

Red 34 |13 372 108 312

Unreachable o |~ 4 | 3 3 0

‘Table 3.1-4 depicts the number of files in each module by Version. There is no statistical
significance to the number of files, but there are correlations between that number %and the

enumerated functions and errors. There may also be a correlation between file number and
efficacy of the CGS Tool.

Table 3.1<4 Total Number of Files peij 4vVersi0n/Module

Version | VDCC HRLC SC1553 SERC | Mcc
5.0 19 e 12 g 21
6.0 19 26 12 T 21
7.0 25 4 25 9 23

The CGS Tool detects errors within files for each function by line number. Because the
functions may appear on a number of lines within the code, we counted the errors for all
instances as one. For example, in the SC1553 module, the file BC.C contains a function
Init-BC-Message-Link, which shows up on 45 different lines of code. The error is
counted as one “class” with multiple instances. Table 3.1-5 contains the total
function/error count. '

Table 3.1-5 Total Number of Functions/Errors per Version/Module

Version VDCC HRLC SCI1553 SERC MCC
5.0 62 58 42 23 42
6.0 61 60 43 23 43
7.0 57 4 58 | 21 41

3.2 Data Interpretation

K

Data interpretation consisted of consolidation into error classes by function for each mbdule,
error verification and isolation, which entailed verifying defects discovered with the CGS
Tool against known, documented defects, establishing severity of defects, and cross-
correlation of defects to metrics.

Analyses of all defects show that error classes are consistent across the three B-RIC -

Versions; hence consolidation was done by isolating error commonality for all Versions by
module.

3.2.1 Data Consolidation

After data consolidation and isolation of those errors that are caused by external variables,
there are four error classes remaining that were the consequence of the test environment
and/or the capability of the CGS Tool. They are listed below.

> Hardware Pointers, which are largely a consequence of the test environment. The
isolation of the source code verification with the CGS Tool without attachments to
external devices and/or interfaces shows up as repeated errors for all instances where
there is no connectivity. For example, in the SERC Module, the Payload Manager
Function calls the Payload Table. Because that Function depends on an external link
for execution, the CGS Tool tagged all instances of calls as Red errors.

> Bit Fields, which is a consequence of the CGS Tool functionality. The Tool cannot
“see” bit fields.

» Un-initialized Pointers, which the Too! cannot “see”.

» False Indications, which are caused by the code inclusion of C files into another C
file. The Tool does not keep a history of the inclusion.

Because of the nature of the errors in the classes, listed in paragraph 3.2.1, we would expect .

that there is no impact or severity to the integrity of the B-RIC code from those errors. The
errors are caused by the Tool and/or the test environment.

3.2.2 Error Verification and Isolation
The code defects are listed below by order of severity.

» There is a serious memory leak in the HRLC module. We suspected a problem,
which the CGS Too! did not register. We suhsequently applied another tool to the
module and found the leak.

» There are un-initialized arrays of File Pointers in the code.

" » The run duration for the VDCC module indicates potential problems with execution.
As illustrated in Table 3.3.2-1, the mean run time for that module was 14 hours. The
- comparative run times for the other modules ranged from % hour to 2 hours.

» As illustrated in Tables 3.1-1 through 3.1.3, three of the five modules contain dead
code, which impacts code integrity. The HRLC, SC1553, and SERC have several
instances of dead code, which may limit code functionality and/or cause delays in
execution because of potential overload of on-orbit platforms. "

3.2.3 Cross-correlation to Established Metrics
Cross-correlation to metrics consisted of the following:
- » Dead code
_> Misuse (arrays out-of-bounds)
> Initialization (no values, incorrect vahies)

' > Null pointer de-referencing

Data analyses of the code runs show instances of dead code, as discussed above. The CGS s

Tool does not distinguish misuse, initialization, and null pointer de-referencing.
3.3 CGS Tool Evaluation
3.3.1 Error Correctness

In addition to total checking time, which is enumerated in paragraph 3.3.2 below, other
‘metrics against which the CGS Tool was applied include: '

> Numbers of false positives
> Percentage correct/incorrect

‘The numbers of false positives, indicated as Orange, for ali modules and Vers10ns were very
high. Tables 3.1-1 through 3.1-3 illustrate.

The percentage correct/incorrect findings are derived with the following formula:

G+R+U
G+R+O+U

Raw tabulation across Versions and modules show mean correctness of 65%. When errors
that are caused by the CGS Tool not “seeing” functions are removed from that equation, the
mean is 90%.

~J

3.3.2 Run-time Efficacy
Table 3.3.2-1 illustrates the mean duration of the runs for all the B-RIC modules.

Table 3.3.2-1 CGS Tool Run-time

Module yDCC | HRLC SC1553 SERC MCC
Mean 14 1/2 1 172 2
Time in

Hours

As discussed above, the VDCC mean run-time of 14 hours is disproportionate to the other
modules, including the MCC, which is much larger in SLOCs.

3.3.3 Usability

The CGS Tool has been used primarily on very large flight software applications at the Jet
Propulsion Laboratory (JPL) and at MSFC. The application of the Tool at NASA ARC on
the B-RIC code diverged from the norm because of the smaller scale and different findings.
For the Technology Developers, the results of the B-RIC research infusion are lessons
learned about areas that the Tool does not “see”. Those lessons learned have resulted in
evaluations of potential enhancements to the CGS Tool:

Application of the CGS Tool to the HHR B-RIC code re;sultéd in finding defects that were
not previously -demonstrated in test and verification of the B-RIC. The most significant of
those is the memory leak in the HRLC module. Those findings warrant further investigation.

For the Technology Developers, the divergence from the norm of using the CGS Tool on the
B-RIC has resulted in evaluating the Tool’s efficacy across different applications, and
locating potential areas where the Tool may warrant modification. According to the
Technology Developers, the usability of the Tool would be improved if it computed
information differently to make it more readable.

For the Application Developers, training in, and use of, the CGS Tool has resulted in

knowledge that can be transferred to other mission-critical software development efforts for
NASA.

4.0 Summary

The primary objectives of the On-Orbit Software Analysis Research Infusion Project were
met. The CGS Tool was successfully used to discover and verify program properties and
dependencies, and to detect and isolate software defects. The Tool application to the B-RIC
software resulted in data gathering that can be used for comparative evaluation of future B-
RIC Version releases and other software projects, Application of the CGS Tool also resulted
in successfully transferring expertise from the Technology Developers to the Applications

Developers, cntlcal for exportablhty and continuity of the technology to other programs and

projects.

The secondary ebjectwe incremental validation of the CGS Tool, was also successfully mef. ,
The consequences of applvmg the Tool in a different-than-usual environment provided

lessons learned for the Technology Developers about areas where the Tool may be modified 7_

and/or expanded to suit different applications.
The most 51gmﬁcant findings are highlighted below.

> There are serious defects in the B-RIC code that may impact mission-critical
_performance and operattons.

> The B-RIC code structure is non-standard, which made readmg outputs of the CGS
Tool difficult. - :

> Applzcatton of the CGS Tool to a non-flight application provided good ;insight‘ for
the Technology Developers into desired and/or reqmred Tool modifications for
different software applications. :

> Application of the CGS Tool provided critical transfer of technology appl’icdtibn oo
from the Technology Developers to the Applications Developers, establzshmg a

good bridge for future technology infusion.

5.0 Actions and Recommendations
5.1 Actions

Application of the CGS Tool to the B-RIC code yielded significant results by identifying
defects, not previously documented. Although there are limitations to the Tool, we are
confident that those limitations did not detract from true findings, primarily because we did a
substautial ainount of “manual™ extraction from the data to verify results.

The defects are documented and will be tracked and monitored to closure via the Habitat
Holding Rack Open Software Problem Report Database, and the Verification Closure Report
(VCR) Database. There are planned future version releases, which can be re-tested using the
same methodology as the one applied in this Project to verify that defects are corrected prior
to launch. Re-test with the existing CGS Tool will yield correction/no-correction of the
errors found in our analyses; if the CGS Tool is modified prior to re-test, there may be
additional errors.

5.2 Recbmmendations

As noted above, application of the CGS Tool to the B-RIC code diverged from previous
applications. The divergence showed limited extensibility of the Tool. The CGS Tool is
domain-specific, using ISO C; the B-RIC uses GCC Extension. The B-RIC code is written in
complex Bit-Structure, which the CGS TooXdoes not “see”. There is currently no Graphical
User Interface (GUI) and po capability for automatic error classification, which makes data
isolation and interpretation difficult.

To maximize the efficacy of the CGS Tool for future on-orbit and/or ground systems’
application, we recommend the following:

» Add a GUI to enhance user-friendliness and readability
Modify tﬁ¢ Tool to include specific error classes
Include automated error classification

Modify the Tool to be structurally independent

>
>
>
» Add automatic isolation of dead code

10

6.0 Acronyms

ARC
BRP
B-RIC
CGS
C-RIC
GUI
HHR
HRLC
H&S
JPL .
MCC
MSEC
NASA
PI

RA

- SC1553
SERC
SLOC
SPR .
VCR -
VvDCC

Ames Research Center
Biological Research Project
BRP-Rack Interface Controller
C Global Surveyor
Centrifuge-Rack Interface Controller
Graphical User Interface
Habitat Holding Rack
High Rate Link Card
ealth and Status
Jet Propulsion L:aboratory
Main Controller Module
Marshall Space Flight Center
National Aeronautics and Space Administration
Principal Investigator
Research Assistant
Serial Card 1553
Serial Card
Source Line of Code
Software Problem Report

. Verification Closure Report

Video Digitalization Compression Card

11

